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Testing is a major component of the Software Development Lifecycle (SDLC), constituting a prominent 

cost driver for both government and industry entities. Therefore, many businesses are automating their 

software testing in order to save money and improve quality.  When considering whether automation is 

a viable option, businesses must take several factors into account.  The purpose of this document is to 

illuminate these factors. 

Software development and integration is a continuous process throughout the acquisition life cycle. 

Automated Software Testing can improve testing capabilities, replacing some of the resource-intensive 

manual efforts, and can be executed alone or in conjunction with manual testing. Regardless of the 

complexity, technical maturity, or requirements of the software program, Automated Software Testing 

may be a viable option. 

ADVANTAGES AND DISADVANTAGES OF AUTOMATED SOFTWARE TESTING 

Automated Software Testing is characterized by the following advantages and disadvantages: 

 Advantages 

1. Saves Time and Money 

 Reduces setup time by automating data staging. 

 Streamlines regression testing after every software modification, patch or release by 

reducing manual labor. 

 Reduces overall test execution times at minimal cost. 

2. Improves Software Quality 

 Minimizes human errors. 

 Enhances repeatability and consistency. 

 Reduces the risk of errors through more thorough testing (more detail below). 

3. Expands and Enhances Test Coverage 

 Automated Software Testing can execute thousands of complex test cases 

throughout each test run. 

 Lengthy tests can be run unattended, e.g., overnight. 

4. Allows additional testing not suitable to Manual Software Testing 

 Load and performance testing 

 Simulation of thousands of users and concurrent processes. 

 Endurance testing 



 Examination of a software system as it runs for a long duration, and 

measurement of the system's reaction parameters. 

 Longevity testing 

 Evaluates a system's ability to handle a constant, moderate work load for a 

long time. 

 Race-condition testing 

 Able to simulate complex scenarios caused by timing issues that occur only 

when a system is handling heavy volumes from multiple connections. 

 Automated testing allows identification of potentially catastrophic issues 

early, before they cause system outages. 

 Large and greatly varied data sets that the automated tool is able to generate, 

allowing more exhaustive testing 

 Disadvantages 

1. Challenging process which requires appropriate resources.  

 Automation Architect and Automation Engineers (often costly and difficult to find). 

 Developers with knowledge of scripting and programming, e.g., Java or Visual Basic. 

 Subject Matter Experts (SME) with firm grasp of application being automated. 

2. Additional costs for setup (e.g., purchase of the automation tool, training of staff, and 

maintenance of test scripts), equipment, lab, and annual software maintenance fees. 

3. Errors in automated scripts, though rare, can negate data collected and force re-testing. 

SCOPE OF THE INITIATIVE FOR AUTOMATED SOFTWARE TESTING 

Once the advantages and disadvantages have been weighed, the scope of the initiative must be defined.  

The software application(s) should be analyzed to determine which portions can be automated.  Good 

candidates are test cases that: 

 Process a large amount of data. 

 Are time-consuming or repetitious. 

 Are complex or difficult to execute. 

 Are prone to human error during manual testing. 

 Perform common, frequently executed processes. 

 Assess functionality of core and critical business functions. 

 Ensure continued software functionality through regression testing. 

CHECKLIST FOR AUTOMATED SOFTWARE TESTING 

The analysis above will define whether your application has a large enough scope to justify Automated 

Software Testing.  If so, the following checklist should be used. 

 Leadership Approval – Must be established during project planning phase to ensure support. 

 Calculation of Business Benefits – Perform detailed analysis to predict value of implementation 



1. Cost-Benefit Analysis (CBA) or Business Case Analysis (BCA): Perform thorough business 

study to show the costs and benefits of Automated Software Testing. 

2. Level of Effort (LOE): Investigate the existing LOE for the project to prevent any issues, e.g., 

concurrent test environment usage resulting in resource collisions. 

3. Return on Investment (ROI): Run a calculated analysis of automating your program to 

determine the total cost, savings per year, benefits per year, and overall gain (benefit 

divided by investment). 

4. Break-even point: Determine when the program will recoup the costs. 

 Tools – Decide which automated tool(s) to use for your program.  Research all possible tool options, 

list the pros and cons of each tool and decide which one will benefit your program the most. 

Considerations include: 

1. Compatibility with system being automated 

2. Browsers and operating systems supported 

3. Applications supported, e.g., mainframe, back-end, and web 

4. Programming languages supported 

5. Level of coding experience required among Automation Engineers 

6. Amount of coding required to generate automated test scripts 

7. Reusability of test components 

8. Load testing capability 

9. Reporting and analysis capabilities 

10. Ability to record and playback 

11. User-friendliness of interface 

12. Costs  

 Initial cost:  Procuring the software/tool 

 Maintenance costs: Tool support including critical updates, patches, bug fixes 

 Support costs: Additional fees, if applicable 

 Licensing costs:  Number needed for team members plus a few extras for backup 

 Training costs: Classes needed for the team, if applicable 

 Environment – Define needs of development and testing environment 

1. Ideal development setting will simulate a production-like environment. 

2. Decide which data sets are needed for automated testing. Stage data prior to test execution 

if needed. 

3. Ensure all development and testing accounts are set up, with appropriate permissions. 

4. Establish a process for software and data baselining. 

 Location – Determine the requirements for development and testing site 

1. Consider whether project requires a lab, conference room, or both, and whether it should 

be located in-house or an external facility. 

2. Ensure space is adequate to support team, observers, meetings, and equipment. 

3. Weigh connectivity requirements – security level, wireless vs. wired network. 

4. Compare costs of various options to ascertain best fit. 

 Automated Software Testing Team – Determine and fill resource requirements. 



1. Develop Knowledge, Skills, and Abilities (KSA) required (e.g., Test and Evaluation). 

2. Analyze programming skills needed (e.g., Java, C, C++, Visual Basic). 

3. Compose team – testers, software engineers, database administrators (DBA), SME, etc. 

4. Internal versus external resources:  Weigh costs, availability and long-term benefits.  

Determine whether existing program resources are available to assist. 

5. Create position descriptions and complete necessary hiring actions, e.g., online job postings. 

 Overall Costs to Implement – Quantify funding needed for implementation. 

1. Automated software tool:  Initial, maintenance, support, licensing, and training 

2. Training: Program-specific training and automation-tool training  

3. Labor: Number of people, length of time needed and billing rate 

4. Location and facility: Development and testing site 

5. Contract: Fees associated with tool procurement, contractor support, facility 

6. Sustainment and maintenance: Automated test-script updates, repository, documentation 

 Prototype – Develop and present to ensure Proof of Concept. 

 Documentation – Written by the team to ensure a successful implementation. 

1. Project Management Documents 

 Project Structure, Monitoring & Control– business alignment, project initiation and 

acceptance 

 Project Management Plan (PMP) – scope, schedule, cost and performance  

 Project Charter – mission, objectives, deliverables and member expectations 

 Integrated Master Schedule (IMS) – resource-loaded timeline with milestones  

 Communications Plan – details of stakeholder engagement  

 Data/Reporting Plan – consistent reporting procedure 

 Work Breakdown Structure (WBS) and WBS Dictionary – hierarchy of work elements 

 Organizational Breakdown Structure (OBS) – tiered depiction work teams/functions 

 Financial Structure of Project –billing elements and network activities 

 Procurement Strategy – specific procurement actions for services or supplies 

 Project Spend Plan – program-level budget development and execution 

 Project Resource Plan – rough order of magnitude (ROM) estimates of manpower, 

facilities, IT and other operational requirements  

 Project Closeout Plan – facilities, materials, contract, financial and workforce 

2. Technical Execution 

 Systems Engineering Plan (SEP) – guide for all technical aspects of the program 

 High-Level System Requirements – top-level requirements, e.g., stakeholder 

 Decomposed System Requirements – breakdown of high-level requirements 

 Requirements Traceability Matrix (RTM) – linking of requirements throughout 

validation process 

 System Design – engineering design overview for Automated Software Testing 

 Technical Review Action Plan (TRAP) – guide for facilitating Systems Engineering 

Technical Review (SETR) event, e.g., entry/exit criteria and approval process 



 Automation and Development Guide – coding standards, script-development 

process, configuration instructions 

 Automated Test Script Suite – developed by test team from manual procedures 

 Detailed Test Plan (DTP) - overall Test and Evaluation structure and objectives  

 Test Report – results of testing to include results and analysis of testing 

 Best Practices & Lessons Learned 

 Other Considerations – Must be taken into account when deciding whether to pursue Automated 

Software Testing. 

1. Industry Research: Find out sources of best practices, tips, tool suggestions, and support 

2. Efficiency: Develop a strategy for how Automated Software Testing will maximize efficiency. 

3. Training: After you choose the tool, decide whether or not training classes or other tools 

(books, tutorials, guides) are needed for the team. Training classes are a major expense. 

4. Process Flow: Create a chart to show how you will automate your program (see below). 

 

 



CONCLUSION 

This paper outlines the factors to evaluate and the process to follow in implementing Automated 

Software Testing.  Initial factors must be present such as leadership approval, funding, and resources.  

Program managers should evaluate the environment to determine whether it meets the scope for an 

implementation, and if so, follow the detailed project checklist for maximum success. 

In conclusion, even though Automated Software Testing requires up-front costs, it also saves money and 

improves quality, along with other benefits.  For programs that prove to be good candidates, the 

benefits far outweigh the costs. 
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